Relationship between Marbling and Reproduction

Presented by: Dan Loy Iowa Beef Center at Iowa State University

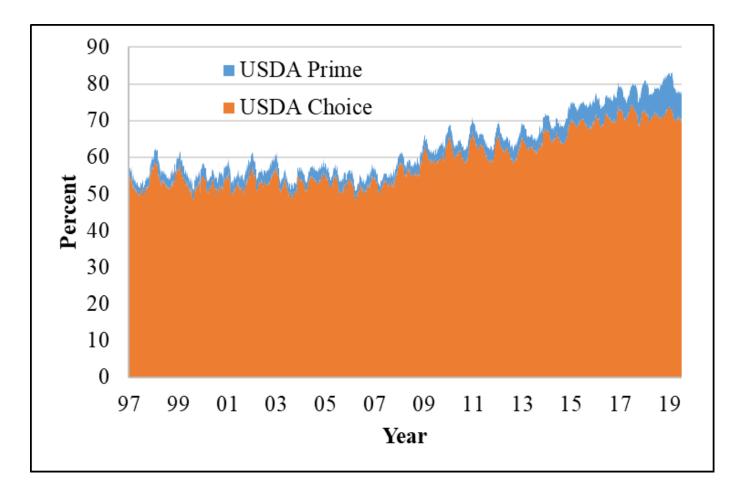
The Team

- Katy Lippolis, Assistant Professor and Extension Cow-calf Specialist
- Erika Lundy, Extension Beef Specialist, Southwest Iowa
- Beth Reynolds, Extension Beef Program Specialist
- Patrick Wall, Extension Beef Specialist, Southeast Iowa
- Jamie Williams, Associate Scientist and Project Manager
- Mark Honeyman, Associate Dean, College of Agriculture and Life Sciences

Outline

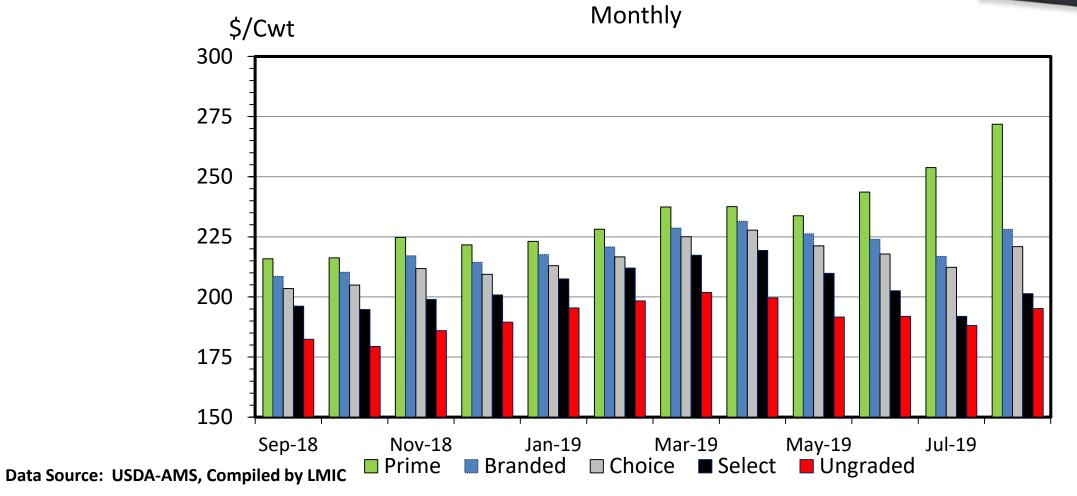
- Why marbling is important
- Relationship between marbling and maternal traits (previous reviews and studies)
- Components of maternal productivity
- The ISU Beef Breeding Project Case Study
- Summary and conclusions

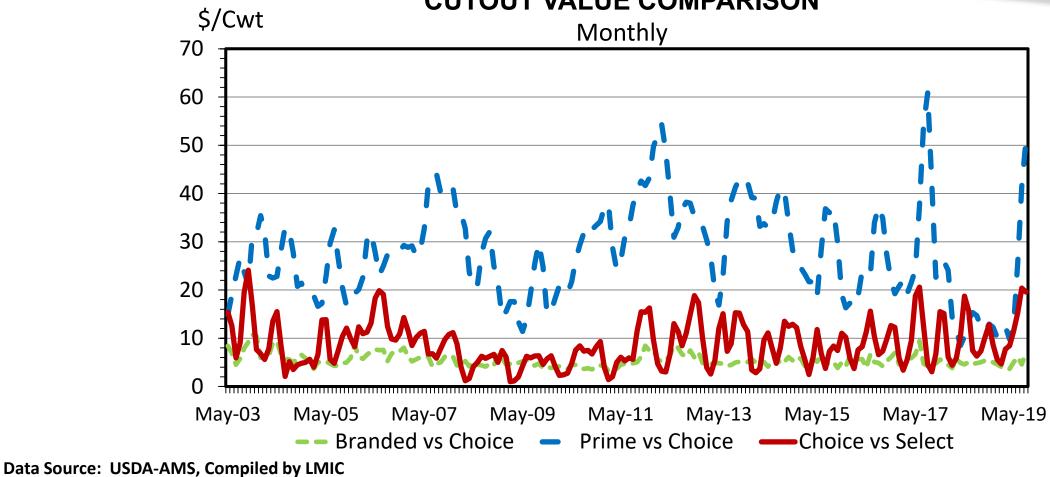
Does marbling = quality?


Strip steaks rated acceptable by consumers

USDA Quality Grade	Tenderness	Juiciness	Flavor	Overall liking
Prime	95	92	88	91
Premium Choice	87	85	85	86
Low Choice	86	83	84	83
Select	77	76	75	75
Standard	75	68	72	71

O'Quinn et al. 2018

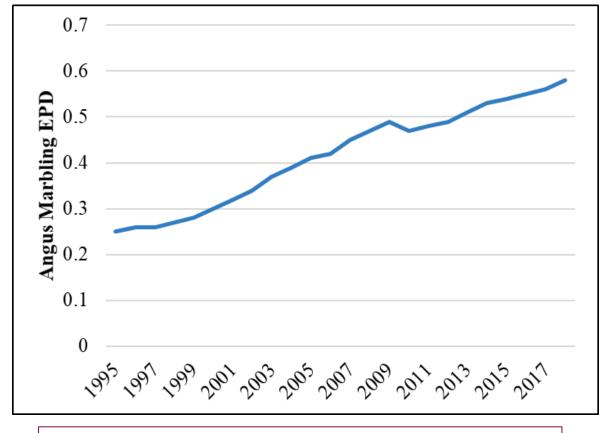

Improvement in US Quality grades from 1997 to present


CUTOUT VALUE

CONVENTION

Livestock Marketing Information Center

CONVENTION



CUTOUT VALUE COMPARISON

Livestock Marketing Information Center

Angus genetic trend for marbling

By birth year, based on EPDs as of September, 2019

Previous Reviews

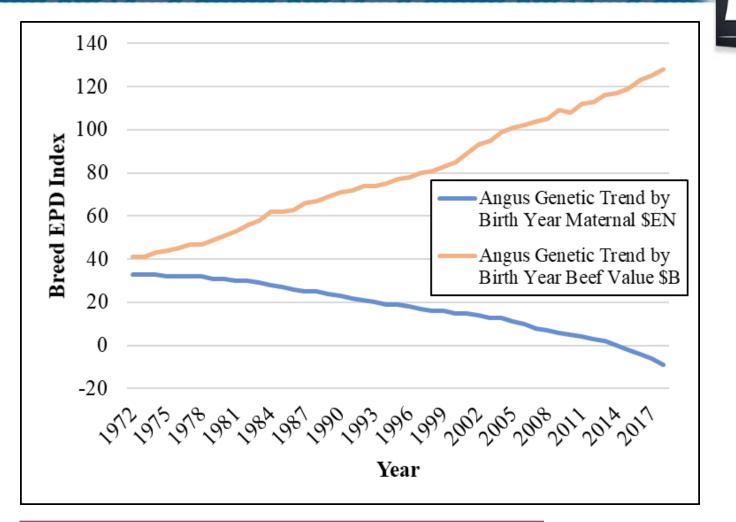
THE MPACT OF SELECTING FOR MARBLING ON BEEF CON HERDS

4

CONVENTION

Selection for Marbling and the Impact on Maternal Traits

Understanding the implications of selection for marbling in a cowherd

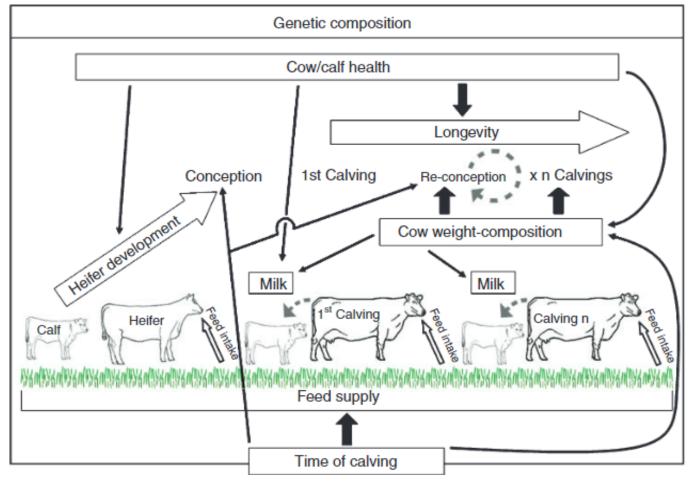

J. K. Smith and S. P. Greiner

Department of Animal and Poultry Sciences Virginia Polytechnic Institute and State Universit Blacksburz. VA

ed for Certified Angus Beef LLC

https://www.cabcattle.com/about/research/

Genetic trends for \$EN and \$B


More recent research (Red Angus)

- No genetic relationship between heifer pregnancy and ultrasound intramuscular fat (UIMF)
- Small but positive genetic relationship between stayability and UIMF
- Ultrasound backfat was the best apparent indicator of stayability
- Boldt et al, 2018

Components of maternal productivity

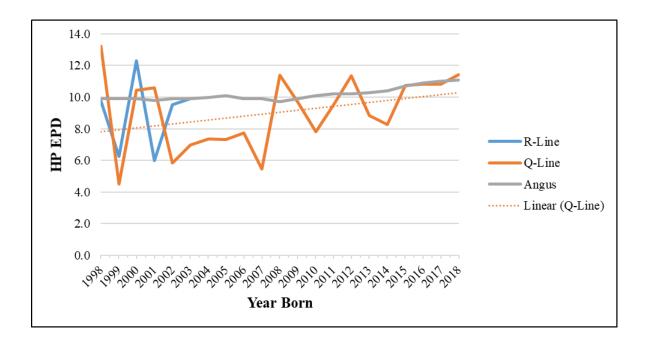
Key components (open boxes or arrows) of maternal productivity and their interactions (closed arrows). Walmsley et. al. (2018)

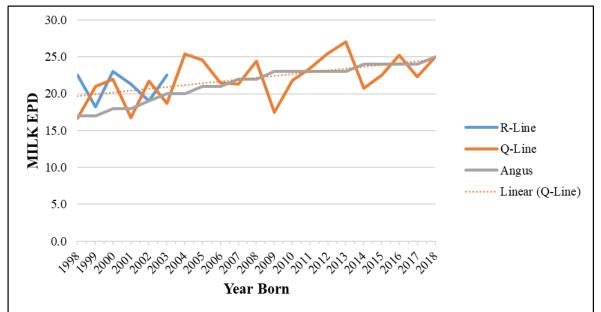
ISU Angus Breeding Project

tis

ISU Angus Breeding Project

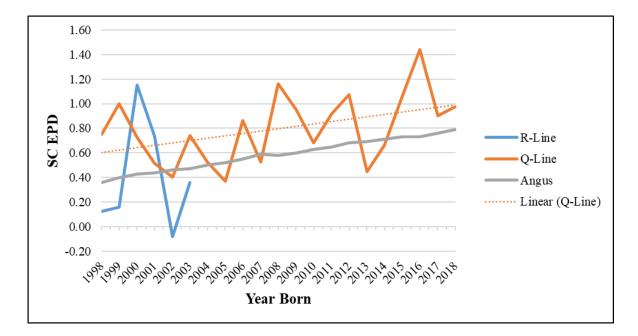
- Began in 1996. Originally with a quality (Q-line) and a retail product (R-line). It has been selected for IMF or marbling for over 20 years.
- Located near Chariton in Southern Iowa
- Approximately 400 cows (300 Spring calving and 100 fall calving)

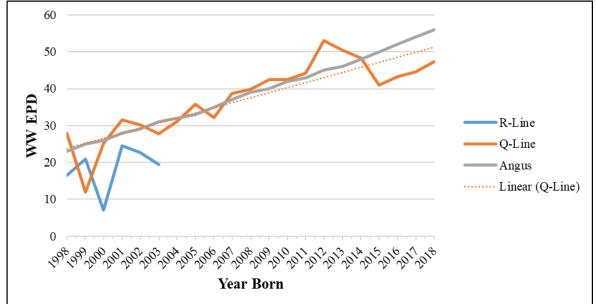


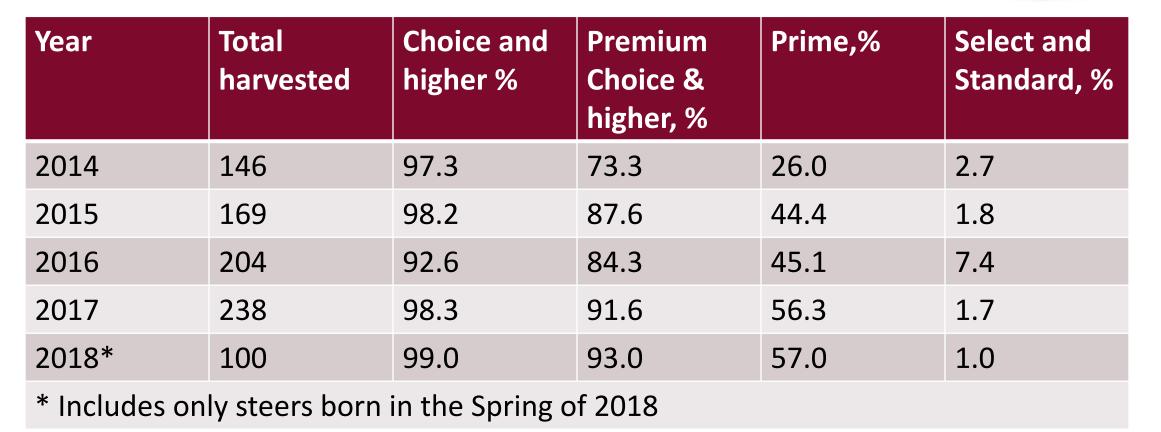

Genetic trends for marbling in ISU herd and Angus breed

1.40 1.20 1.00 MARB EPD 0.80 R-Line 0.60 Q-Line Angus 0.40 Linear (Q-Line) 0.20 0.00 ,09°,09% 0,0,0,0,0 Year Born

zoetis

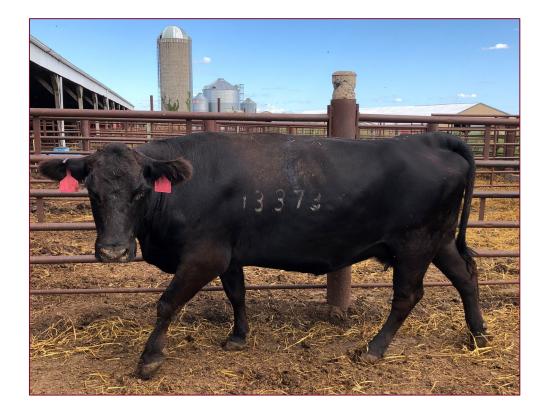

Genetic trends for heifer pregnancy and milk for ISU herd and the Angus breed



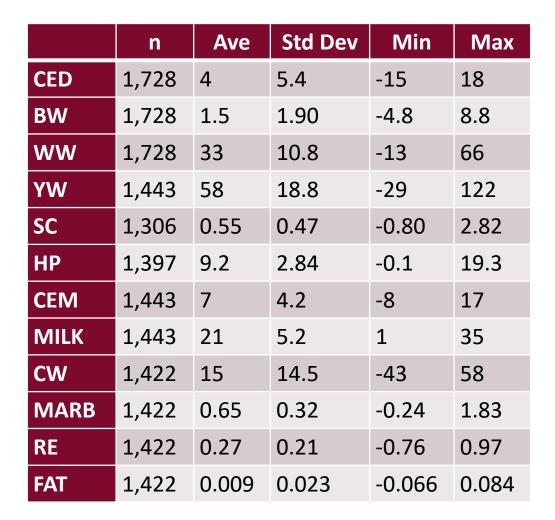

Genetic trends for scrotal circumference and weaning wt. for ISU herd and the Angus breed

Percent of carcasses by grade and birth year

ISU Breeding project carcass data by birth year


Year	MS ¹	REA, sq. in	FT, in	HCW, lb	YG
2014	1179.6	12.3	0.50	700.0	2.8
2015	1261.6	12.3	0.50	744.0	3.2
2016	1273.5	12.1	0.50	736.5	3.3
2017	1291.9	11.8	0.60	752.1	3.5
2018	1291.7	12.9	0.60	792.5	3.3

Prime cow


Four data sets

- ISU Breeding Project EPDs for all animals born from 2001 to 2018
- Maternal Evaluation of calving interval and reproductive success of cows born 2001 to 2016
- Ultrasound data on all yearling cattle from 2001 to 2011
- Yearling bull fertility data on two calf crops where BSE and carcass data was collected

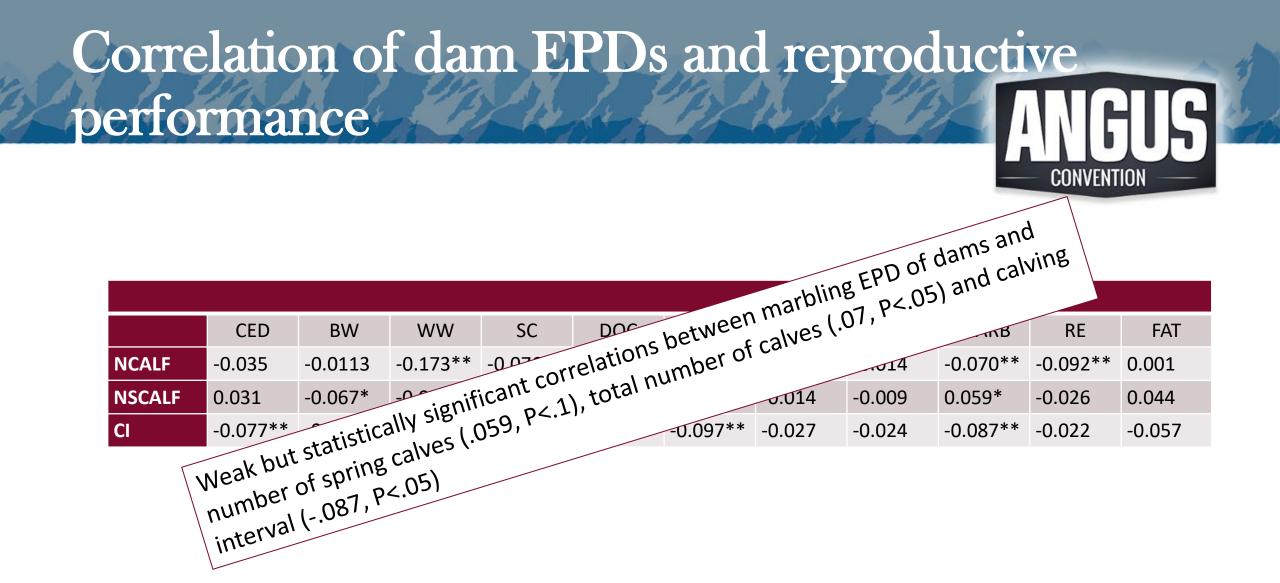
ISU Breeding Project EPD summary statistics

EPIC	S	The second		3/1	2 la	L'AS	Ale .		3/1	AN	HIS
			YW -0.198** 0.395** ips exis 45**) c **)					dscrot	al	CONV	ENTION
	BW	WW	YW	SC	HP	CEN	EPD ar	, heifer	•	RE	FAT
CED	-0.887**	-0.126**	-0.198**	0.036	012	harbline	, **) an	d nen			0.129**
BW		0.293**	0.395**	, het	Ween	oct (.17	4		-0.043*	0.143**	-0.087**
WW			ins exis	teans	sase dir	Ecs		0.776**	0.373**	0.293**	0.162**
YW		ationsh	11ps =	alving		-4/**	0.267**	0.837**	0.370**	0.356**	0.104**
SC DOS	itive rei	nce (.2	YW -0.198** 0.395** ips exis 45**) c		J.Z69**	0.015	0.125**	0.180**	0.245**	0.140**	0.185**
HP	cumfere egnanc		**)			0.086**	-0.047*	-0.005	0.206**	0.113**	0.121**
CEM	ognanc	Y (.20					0.143*	-0.132**	0.101**	-0.037	0.156**
MILK P	E5.							0.377**	0.088**	0.176**	0.075**
CW									0.229**	0.478**	0.043*
MARB										0.072**	0.417**
RE											-0.374**

Correlations of ISU Breeding Project EPDs

Herd management

- Heifers are retained from the Spring herd
- Heifers and cows that fail to breed back once fall to the Fall herd
- Cows that fail to breed back in the fall herd are culled



ISU Breeding Project dam EPDs and reproductive performance summary statistics

Variable	n	Ave	Std Dev	Min	Max
NCALF	1,032	4	3.0	1	14
NSCALF	1,032	3	2.6	0	14
CI	827	392	39.7	305	570
CED	855	4	5.4	-13	18
BW	855	1.5	1.91	-4.8	7.5
WW	855	32	10.3	-13	62
SC	787	0.57	0.48	-0.80	2.11
DOC	830	-7	8.8	-32	22
НР	847	9.6	2.61	2.4	17.4
CEM	855	7	4.3	-8	16
MILK	855	21	5.4	2	35
MARB	850	0.67	0.32	-0.24	1.61
RE	850	0.28	0.21	-0.69	0.88
FAT	850	0.009	0.023	-0.063	0.084

ISU Breeding Project progeny ultrasound and dam EPD summary statistics

	n	Ave	Std Dev	Min	Max
UAIMF	1,341	4.81	1.21	1.60	10.39
UARE	1,342	10.53	2.28	4.30	16.30
UARF	1,342	0.26	0.11	0.04	0.68
UARUF	1,340	0.27	0.01	0.04	0.65
CED	1,379	3	5.7	-13	18
CEM	1,379	7	5.0	-8	16
НР	1,379	8.68	2.98	0.00	17.40
MILK	1,379	19.64	6.22	0.00	35.00
SC	1,379	0.42	0.47	-0.80	1.93
MARB	1,379	0.54	0.31	-0.24	1.49
RE	1,379	0.23	0.22	-0.76	0.88
FAT	1,379	0.005	0.025	-0.066	0.081

CONVENTION

										U	INVENTION
	UARE	UARF	UARUF	CED	CEM	НР	MILK	SC	MAD	und	FAT
UAIMF	0.110**	0.376**	0.323**	0.033	-0.001	-0.003	-0.006	y EPDs ar	nd ultrase		0.113**
UAREA		0.670**	0.611**	0.026	0.021 Veen ref	productive	01.	J.U31	0.020	0.222**	-0.055**
UARF	V	Veak to n phenotyf	o relation pes.	ISUIA .	~38	HP -0.003 oroductive -0.054**	0.071**	0.047*	0.066**	0.002	0.170**
UARUF		phenoty		0.043	0.018	-0.031	0.073**	0.080**	0.058**	0.036	0.158**

Correlation of carcass ultrasound and dam EPDs

ISU Breeding Project yearling bull summary statistics

	n	Average	Std Dev	Minimum	Maximum
Scrotal circumference, cm	120	36.4	2.79	31.0	47.0
Motility, %	114	69.2	19.51	10.0	90.0
Normal morphology, %	114	58.0	23.43	8.0	92.0
Head defects, %	114	2.1	1.95	0.0	11.0
Yearling body weight, lb	120	1127	79.8	900	1340
Average daily gain	110	4.38	1.202	1.71	7.20
Hot carcass weight, lb	112	799.2	66.2	627.0	940.0
12 th rib back fat thickness, in	112	0.50	0.156	0.20	0.91
Ribeye area, sq. in.	112	13.73	1.392	11.10	18.00
Yield grade	112	2.9	0.57	1.41	4.17
Marbling score ¹	112	1074	99.4	900	1409
¹ 900 = Select; 1000 = low Choice; 11	.00 = aver	age Choice;	1200 = high	n Choice; 130	0 = Prime

CONVENTION

Correlation of ISU Breeding Project yearling bull fertility and actual growth and carcass traits

				YBW 0.369** -0.050 sted bet quality				rotal	size	
	MOT	MOR	HD	YBW	ADG	HCW	and and	SCIOR		MS
SC	-0.161*	-0.175*	-0.223*	0.369**	-0.157*	rhling	EPD		0.145	0.167*
ΜΟΤ		0.494**	-0.118	-0.050	ween m	ISID		-0.039	-0.135	-0.063
MOR			-0.238**	ted bet	Mee		-0.265**	-0.205**	-0.124	-0.035
HD			nips exi	steu o quality	•	-0.033	-0.101	-0.024	-0.019	-0.183*
YBW	r	olations	amer	quant	-0.160*	0.717**	0.165*	0.164*	0.261**	0.095
AD	ositive	efecting	Serve			-0.014	-0.334**	-0.082	-0.188**	-0.214**
HCM	ithout	allee					0.401**	0.551**	0.257**	0.317**
BF	MICH							0.170*	0.766**	0.532**
REA									-0.414**	0.152
YG										0.406**

ISU Breeding Project dam EPDs of yearling bulls used in the analysis

	n	Ave	Std Dev	Min	Max
CED	111	4.8	5.09	-9.0	13.0
BW	111	1.32	1.870	-2.00	7.20
WW	111	35.0	8.80	8.0	54.0
YW	111	64.2	15.37	13.0	95.0
SCE	111	0.68	0.492	-0.52	1.89
НР	111	9.89	2.672	3.90	16.10
CEM	111	7.4	3.77	-3.0	16.0
MILK	111	22.4	5.07	12.0	34.0
MW	111	8.8	23.83	-71.0	58.0
CW	111	18.0	13.12	-15.0	49.0
MARB	111	0.77	0.292	0.00	1.56
RE	111	0.29	0.200	-0.36	0.71
FAT	111	0.01	0.020	-0.03	0.08

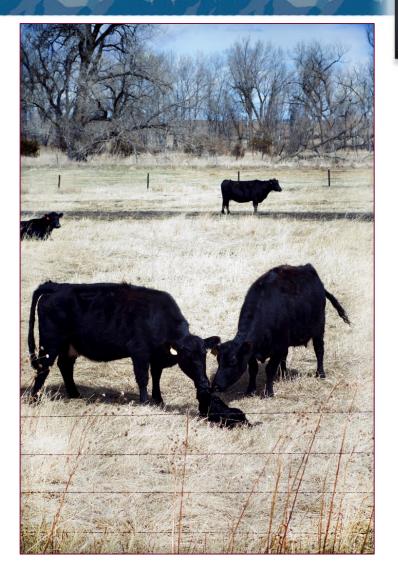
Correlation of ISU Breeding Project yearling bull fertility to dam EPDs

										rbli	ing EP		
	CED	BW	ww	YW	SCE	HP	CEM	MILK	d dam	marbi	IVIARB	RE	FAT
SC	-0.036	0.033	-0.078	-0.138	0.136	-0.02 .ith bl	III fert	lity a.	-0.151**	-0.139	-0.124	-0.160**	-0.088
ΜΟΤ	-0.062	0.117	0.147	olation	iships v	VICI	-0.019	0.064	0.031	0.145	0.155	0.133	0.019
MOR	CED -0.036 -0.062 -0.171** 0.191*	o statis	stical r	Elu	0.033	-0.033	-0.026	-0.149	0.073	0.099	-0.096	0.174**	-0.055
HD	0.191*	v.109	0.131	0.070	0.158**	0.057	0.142	0.013	-0.072	0.065	0.128	0.093	0.054

CONVENTION

-DD

 Small, positive relationship between milk and marbling EPDs in the herd



 A significant positive relationship (r = 0.206) between marbling and heifer pregnancy EPDs in the herd.

 Positive correlations between marbling EPD and the EPDs for scrotal circumference, heifer pregnancy and maternal calving ease.

- Marbling EPD of the cows in the herd had--
 - a weak negative relationship to total number of calves
 - a weak positive relationship to number of calves born in the spring herd (under the management scheme of the herd)
 - a weak negative relationship with calving interval.

 Relationships between ultrasound intramuscular fat phenotypes of the progeny were not significantly related to reproductive EPD (CED, CEM, HP, SC and MILK).

- A tendency for a positive correlation between yearling bull scrotal circumference and marbling scores
- No measurable impact on sperm MOT or MOR.

Acknowledgements

- Certified Angus Beef for funding this effort
- Kelli Retallick of AGI for data queries
- Brad Evans and Logan Wallace, current ISU McNay Research Farm Managers
- All prior research farm managers and staff from the ISU Rhodes and McNay Farms
- Doyle Wilson, Gene Rouse, Richard Wilham, Jim Reecy, JR Tait and numerous staff and graduate students that have worked with this herd and project since 1996.

Thank You!

Questions?

www.iowabeefcenter.org

